

Caelus Python Library (CPL)

	Version

	v0.1.0

	Date

	Apr 30, 2018

Caelus Python Library is a companion package for interacting with Caelus CML [http://www.caelus-cml.com] open-source CFD package. The library provides
utilities for pre and post-processing, as well as automating various aspects of
the CFD simulation workflow. Written in Python, it provides a consistent
user-interface across the three major operating systems Linux, Windows, and Mac
OS X ensuring that the scripts written in one platform can be quickly copied and
used on other platforms.

Like CML, CPL is also an open-source library released under the Apache License
Version 2.0 license. See Apache License Version 2.0 [https://www.apache.org/licenses/LICENSE-2.0] for more details on use and
distribution.

This documentation is split into two parts: a user and a
developer manual. New users should start with the user
manual that provides an overview of the features and capabilities currently
available in CPL, the installation process and examples of usage. The developer
manual documents the application programming interface (API) and is useful for
users and developers looking to write their own python scripts to extend
functionality or add features to the library. See Introduction for more
details.

User Manual

	Introduction
	Usage

	Contributing

	Installing Caelus Python Library (CPL)
	Installing CPL with Anaconda Python Distribution
	Install Anaconda

	Install CPL

	Alternate Installation – Virtualenv
	Prepare system for virtual environment
	Useful virtualenvwrapper commands

	Install CPL

	Check installation

	Building documentation

	Running tests

	Configuring Caelus Python Library
	Checking current configuration

	CPL configuration reference
	Core library configuration
	Python environment options

	System configuration

	CPL logging options

	CML version configuration

	Command-line Applications
	Common CLI options

	Available command-line applications
	caelus – Common CPL actions
	caelus cfg – Print CPL configuration

	caelus env – write shell environment file

	caelus clone – Clone a case directory

	caelus tasks – run tasks from a file

	caelus run – run a Caelus executable in the appropriate environment

	caelus logs – process a Caelus solver log file from a run

	caelus clean – clean a Caelus case directory

	caelus_tutorials – Run tutorials

	Caelus Tasks
	Quick tutorial

	Tasks reference
	run_command – Run CML executables

	copy_files – Copy files

	copy_tree – Recursively copy directories

	clean_case – Clean a case directory

	process_logs – Process solver outputs

	task_set – Group tasks

Developer Manual

	Caelus Python API
	caelus.config – Caelus Configuration Infrastructure
	Caelus Python Configuration

	Caelus CML Environment Manager

	caelus.utils – Basic utilities
	Struct Module

	Miscellaneous utilities

	caelus.run – CML Execution Utilities
	Caelus Tasks Manager

	CML Execution Utilities

	Job Scheduler Interface

	caelus.post – Post-processing utilities
	Caelus Log Analyzer

	Caelus Plotting Utilities

	caelus.scripts – CLI App Utilities
	Basic CLI Interface

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The primary motivation for CPL is to provide a platform-agnostic capability to
automate the CFD simulation workflow with Caelus CML package. The package is
configurable to adapt to different user needs and system configurations and can
interact with multiple CML versions simultaneous without the need to source
environment files (e.g., using caelus-bashrc on Unix systems).

Some highlights of CPL include:

	The library is built using Python programming language and uses scientific
python libraries (e.g., NumPy, Matplotlib). Capable of running on both Python
2.7 as well as Python 3.x versions.

	Uses YAML [http://yaml.org] format for configuration files and input files.
The YAML files can be read, manipulated, and written out to disk using
libraries available in several programming languages, not just Python.

	Provides modules and python classes to work with Caelus case directories,
process and plot logs, etc. The API is documented to allow users to build
custom workflows that are currently not part of CPL.

	A YAML-based task workflow capable of automating the mesh, pre-process,
solve, post-process workflow on both local workstations as well as
high-performance computing (HPC) systems with job schedulers.

Usage

CPL is distributed under the terms Apache License Version 2.0 open-source
license. Users can download the installers [http://www.caelus-cml.com/download/] from Applied CCM’s website, or access
the Git repository [https://bitbucket.org/appliedccm/cpl] hosted on
BitBucket. Please follow Installing Caelus Python Library (CPL) for more details on how to install
CPL and its dependencies within an existing Python installation on your system.

Please contact the developers with questions, issues, or bug reports.

Contributing

CPL is an open-source project and welcomes the contributions from the user
community. Users wishing to contribute should submit pull requests to the public
git repository.

Installing Caelus Python Library (CPL)

CPL is a python package for use with Caelus CML [http://www.caelus-cml.com]
simulation suite. Therefore, it is assumed that users have a properly
functioning CML installation on their system. In addition to Caelus CML and
python, it also requires several scientific python libraries:

	NumPy [http://www.numpy.org] – Arrays, linear algebra

	Pandas [http://pandas.pydata.org] – Data Analysis library

	Matplotlib [https://matplotlib.org] – Plotting package

The quickest way to install CPL is to use the official installer [http://www.caelus-cml.com/download/] provided by Applied CCM. Once installed,
please proceed to Check installation to learn how to use CPL.

For users wishing to install CPL from the git repository, this user
guide recommends the use of Anaconda Python Distribution [http://docs.continuum.io/anaconda/index]. This distribution provides a
comprehensive set of python packages necessary to get up and running with CPL.
An alternate approach using Python virtualenv is described at the end of this
section, but will require some Python expertise on the part of the user.

The default installation instructions use Python v2.7. However, CPL is
designed to work with both Python v2.7 and Python v3.x versions.

Installing CPL with Anaconda Python Distribution

Install Anaconda

	Download the Anaconda installer [https://www.continuum.io/downloads] for your operating system.

	Execute the downloaded file and follow the installation
instructions. It is recommended that you install the default
packages.

	Update the anaconda environment according to installation
instructions [http://conda.pydata.org/docs/install/full.html#install-instructions]

Note

Make sure that you answer yes when the installer asks to add the
installation location to your default PATH locations. Or else the following
commands will not work. It might be necessary to open a new shell for the
environment to be updated.

Install CPL

	Obtain the CPL source from the public Git repository.

Change to directory where you want to develop/store sources
git clone https://bitbucket.org/appliedccm/CPL
cd CPL

	Create a custom conda environment

Ensure working directory is CPL
conda env create -f etc/caelus2.yml

Note

	Developers interested in developing CPL might want to install the
development environment available in etc/caelus2-dev.yml. This
installs additional packages like sphinx for document generation,
and pytest for running the test suite.

	By default, the environment created is named caelus2 when using
etc/caelus2.yml and caelus-dev when using
etc/caelus2-dev.yml. The user can change the name of the
environment by using -n <env_name> option in the previous command.

	Users wishing to use Python 3.x should replace etc/caelus2.yml
with etc/caelus3.yml. Both caelus2 and caelus3
environment can be used side by side for testing and development.

	Activate the custom environment and install CPL within this environment

source activate caelus2
pip install .

For editable development versions of CPL use pip install -e .
instead.

After completing this steps, please proceed to Check installation to test that
your installation is working properly.

Alternate Installation – Virtualenv

This method is suitable for users who prefer to use the existing python
installations in their system (e.g., from apt-get for Linux systems). A
brief outline of the installation process is described here. Users are referred
to the following documentation for more assistance:

	Virtualenv [https://virtualenv.pypa.io/en/stable/]

	VirtualEnvWrapper [https://virtualenvwrapper.readthedocs.io/en/latest/]

Prepare system for virtual environment

	Install necessary packages

Install necessary packages
pip install virtualenv virtualenvwrapper

Windows users must use virtualenvwrapper-win instead of the
virtualenvwrapper mentioned above. Alternately, you might want to install
these packages via apt-get or yum.

	Update your ~/.bashrc or ~/.profile with the following lines:

export WORKON_HOME=~/ENVS/
source /usr/local/bin/virtualenvwrapper.sh

Adjust the location of virtualenvwrapper.sh file according to your system
installation location.

Useful virtualenvwrapper commands

	mkvirtualenv - Create a new virtual environment

	workon - Activate a previously created virtualenv, or switch between
environments.

	deactivate - Deactive the current virtual environment

	rmvirtualenv - Delete an existing virtual environment

	lsvirtualenv - List existing virtual environments

Install CPL

	Obtain the CPL source from the public Git repository.

Change to directory where you want to develop/store sources
git clone https://bitbucket.org/appliedccm/CPL
cd CPL

	Create a virtual environment with all dependencies for CPL

Create a caelus Python 2.7 environment
mkvirtualenv -a $(pwd) -r requirements.txt caelus2

	Activate virtual environment and install CPL into it

Ensure that we are in the right environment
workon caelus2
pip install . # Install CPL within this environment

Note

	Use --system-site-packages with the mkvirtualenv command to reuse
python modules installed in the system (e.g., via apt-get) instead of
reinstalling packages locally within the environment.

	Use mkvirtualenv --python=PYTHON_EXE to customize the python
interpreter used by the virutal environment instead of the default python
found in your path.

Check installation

After installing CPL, please open a command line terminal and execute
caelus -h to check if the installation process was completed
succesfully. Note that users who didn’t use the installer provided by Applied
CCM might need to activate their environment before the caelus command is
available on their path. If everything was installed and configured
successfully, users should see a detailed help message summarizing the usage of
caelus. At this stage, you can either learn about building
documentation and executing unit tests (provided with CPL) in the next sections
or skip to Configuring Caelus Python Library to learn how to configure and use CPL.

Building documentation

A local version of this documentation can be built using sphinx. See
Install CPL for more details on installing the developer environment
and sources.

Change working directory to CPL
cd docs/

Build HTML documentation
make html
View in browser
open build/html/index.html

Build PDF documentation
make latexpdf
open build/latex/CPL.pdf

Running tests

The unit tests are written using py.test [https://docs.pytest.org/en/latest/]. To run the tests executing
py.test tests from the top-level CPL directory. Note that this will
require the user to have initialized the environment using
etc/caelus2-dev.yml (or etc/caelus3-dev.yml for the Python v3.x
version).

Configuring Caelus Python Library

CPL provides a YAML-based configuration utility that can be used to customize
the library depending on the operating system and user’s specific needs. A good
example is to provide non-standard install locations for the Caelus CML
executables, as well as using different versions of CML with CPL simultaneously.

The use of configuration file is optional, CPL provides defaults that should
work on most systems and will attempt to auto-detect CML installations on
standard paths. On Linux/OS X systems, CPL will look at
~/Caelus/caelus-VERSION to determine the installed CML versions and use
the VERSION tag to determine the latest version to use. On Window systems,
the default search path is C:\Caelus.

Upon invocation, CPL will search and load configuration files from the following
locations, if available. The files are loaded in sequence shown below and
options found in succeeding files will overwrite configuration options found in
preceeding files.

	Default configuration supplied with CPL;

	The system-wide configuration in file pointed by environment variable
CAELUSRC_SYSTEM if it exists;

	The per-user configuration file, if available. On Linux/OS X, this is the
file ~/.caelus/caelus.yaml, and %APPDATA%/caelus/caelus.yaml
on Windows systems;

	The per-user configuration file pointed by the environment variable
CAELUSRC if it exists;

	The file caelus.yaml in the current working directory, if it exists.

While CPL provides a way to auto-discovered installed CML versions, often it
will be necessary to provide at least a system-wide or per-user configuration
file to allow CPL to use the right CML executables present in your system. A
sample CPL configuration is shown below download caelus.yaml:

-*- mode: yaml -*-
#
Sample CPL configuration file
#

Root CPL configuration node
caelus:
 # Control logging of CPL library
 logging:
 log_to_file: true
 log_file: ~/Caelus/cpl.log

 # Configuration for Caelus CML
 caelus_cml:
 # Pick the development version of CML available; use "latest" to choose the
 # latest version available.
 default: "7.04"

 # Versions that can be used with CPL
 versions:
 - version: "6.10"
 path: ~/Caelus/caelus-6.10

 - version: "7.04"
 path: ~/Caelus/caelus-7.04

 - version: "dev-clang"
 path: ~/Caelus/caelus-contributors # Use latest git repository
 mpi_path: /usr/local/openmpi # Use system OpenMPI
 build_option: "linux64clang++DPOpt" # Use the LLVM version

 - version: "dev-gcc"
 path: ~/Caelus/caelus-contributors # Use latest git repository
 mpi_path: /usr/local/openmpi # Use system OpenMPI
 build_option: "linux64gcc++DPOpt" # Use the GCC version

The above configuration would be suitable as as a system-wide or per-user
configuration stored in the home directory, and the user can override specific
options used for particular runs by using, for example, the following
caelus.yaml within the case directory:

Local CPL settings for this working directory
caelus:
 logging:
 log_file: cpl_dev.log # Change log file to a local file

 caelus_cml:
 default: "dev-gcc" # Use the latest dev version for this run

Note that only options that are being overridden need to be specified. Other
options are populated from the system-wide or per-user configuration file if
they exist.

Checking current configuration

To aid debugging and troubleshooting, CPL provides a command caelus
cfg to dump the configuration used by the library based on all available
configuration files. A sample usage is shown here:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	$ caelus -v cfg
DEBUG: Loaded configuration from files = ['/home/caelus/.caelus/caelus.yaml']
INFO: Caelus Python Library (CPL) v0.1.0
-*- mode: yaml -*-
#
Caelus Python Library (CPL) v0.1.0
#
Auto-generated on: 2018-04-21 17:03:35 (UTC)
#

caelus:
 cpl:
 python_env_type: conda
 python_env_name: caelus
 conda_settings:
 conda_bin: ~/anaconda/bin
 system:
 job_scheduler: local_mpi
 always_use_scheduler: false
 scheduler_defaults:
 join_outputs: true
 shell: /bin/bash
 mail_opts: NONE
 logging:
 log_to_file: true
 log_file: null
 caelus_cml:
 default: latest
 versions: []

The final configuration after parsing all available configuration files is
shown in the output. If the user provides -v (verbose) flag, then the
command also prints out all the configuration files that were detected and read
during the initialization process. Users can also use caelus cfg to create a configuration file with all the current settings
using the -f option. Please see caelus command
documentation for details.

CPL configuration reference

CPL configuration files are in YAML format and must contain at least one node
caelus. Two other optional nodes can be present in the file,
caelus_scripts and caelus_user whose purpose is described
below.

	
caelus

	The root YAML node containing the core CPL configuration object. This node
contains all configuration options used internally by the library.

	
caelus_scripts

	An optional node used to store configuration for CPL CLI apps.

	
caelus_user

	An optional node node reserved for user scripts and applications that will be
built upon CPL.

Note

In the following sections, the configuration parameters are documented in the
format root_note.sub_node.config_parameter. Please see the sample
configuration file above for the exact nesting structure used for
caelus.logging.log_file.

Core library configuration

Python environment options

	
caelus.cpl

	This section contains options to configure the python environment (either
Anaconda/Conda environment or virtualenv settings).

	
caelus.cpl.python_env_type

	Type of python environment. Currently this can be either conda or
virtualenv.

	
caelus.cpl.python_env_name

	The name of the Python environment for use with CPL, e.g., caelus2 or
caelus-dev.

	
caelus.cpl.conda_settings

	Extra information for Conda installation on your system.

System configuration

	
caelus.system

	This section provides CPL with necessary information on the system settings,
particularly the queue configuration on HPC systems.

	
caelus.system.job_scheduler

	The type of job-scheduler available on the system and used by CPL when
executing CML executables on the system. By default, all parallel jobs will
use the job scheduler, user can configure even serial jobs (e.g., mesh
generation, domain decomposition and reconstruction) be submitted on queues.

	Name

	Description

	local_mpi

	No scheduler, submit locally

	slurm

	Use SLURM commands to submit jobs

	
caelus.system.always_use_scheduler

	A Boolean flag indicating whether even serial jobs (e.g., mesh generation)
should use the queue system. This flag is useful when the user intends to
generate large meshes and requires access to the high-memory compute nodes on
the HPC system.

	
caelus.system.scheduler_defaults

	This section contains options that are used by default when submitting jobs
to an HPC queue system.

	Option

	Description

	queue

	Default queue for submitting jobs

	account

	Account for charging core hours

	stdout

	Default file pattern for redirecting standard output

	stdout

	Default file pattern for redirecting standard error

	join_outputs

	Join stdout and stderr (queue specific)

	mail_options

	A string indicating mail options for queue

	email_address

	Address where notifications should be sent

	time_limit

	Wall clock time limit

Note

Currently, these options accept strings and are specific to the queue
system (e.g., SLURM or PBS Torque). So the user must consult their queue
system manuals for appropriate values to these options.

CPL logging options

	
caelus.logging

	This section of the configuration file controls the logging options for the
CPL library. By default, CPL only outputs messages to the standard output.
Users can optionally save all messages from CPL into a log file of their
choice. This is useful for tracking and troubleshooting, or providing
additional information regarding bugs observed by the user.

Internally, CPL uses the logging [http://docs.python.org/library/logging] module. For brevity, messages
output to console are usually at log levels INFO or higher. However,
all messages DEBUG and above are captured in log files.

	
caelus.logging.log_to_file

	A Boolean value indicating whether CPL should output messages to the log
file. The default value is false. If set to true, then the log
messages will also be saved to the file indicated by log_file as well as output to the console.

	
caelus.logging.log_file

	Filename where the log messages are saved if log_to_file evaluates to True.

CML version configuration

	
caelus.caelus_cml

	The primary purpose of CPL is to interact with CML executables and utilities.
This section informs CPL of the various CML installations available on a
system and the desired version used by CPL when invoking CML executables.

	
caelus.caelus_cml.default

	A string parameter indicating default version used when invoking CML
executables. It must be one of the version entries provided in the file.
Alternately, the user can specify latest to indicate that the latest
version must be used. If users rely on auto-discovery of Caelus versions in
default install locations, then it is recommended that this value be
latest so that CPL picks the latest CML version. For example, with the
following configuration, CPL will choose version 7.04 when attempting to
execute programs like pisoSolver.

caelus:
 caelus_cml:
 default: "latest"

 versions:
 - version: "6.10"
 path: ~/Caelus/caelus-6.10

 - version: "7.04"
 path: ~/Caelus/caelus-7.04

	
caelus.caelus_cml.versions

	A list of configuration mapping listing various versions available for use
with CPL. It is recommended that the users only provide version and path entries, the remaining entries are
optional. CPL will auto-detect remaining parmeters.

	
caelus.caelus_cml.versions.version

	A unique string identifier that is used to tag this specific instance of CML
installation. Typically, this is the version number of the Caelus CML
release, e.g., 7.04. However, as indicated in the example CPL
configuration file, users can use any unique tag to identify a specific
version. If is identifier does not follow the conventional version number
format, then it is recommended that the user provide a specific version in
caelus.caelus_cml.default instead of using latest.

	
caelus.caelus_cml.versions.path

	The path to the Caelus install. This is equivalent to the directory pointed
by the CAELUS_PROJECT_DIR environment variable, e.g.,
/home/caelus_user/projects/caelus/caelus-7.04.

	
caelus.caelus_cml.versions.build_option

	A string parameter identifying the Caelus build, if multiple builds are
present within a CML install, to be used with CPL. This is an expert only
option used by developers who are testing multiple compilers and build
options. It is recommended that the normal users let CPL autodetect the build
option.

	
caelus.caelus_cml.versions.mpi_root

	Path to the MPI installation used to compile Caelus for parallel execution.
By default, CPL expects the MPI library to be present within the project
directory.

	
caelus.caelus_cml.versions.mpi_bin_path

	Directory containing MPI binaries used for mpiexec when executing
in parallel mode. If absent, CPL will assume that the binaries are located
within the subdirectory bin in the path pointed by mpi_root.

	
caelus.caelus_cml.versions.mpi_lib_path

	Directory containing MPI libraries used for mpiexec when executing
in parallel mode. If absent, CPL will assume that the libraries are located
within the subdirectory lib in the path pointed by mpi_root.

Command-line Applications

CPL provides command-line interface (CLI) to several frequently used workflows
without having to write custom python scripts to access features within the
library. These CLI apps are described in detail in the following sections.

Common CLI options

All CPL command-line applications support a few common options. These options
are described below:

	
-h, --help

	Print a brief help message that describes the purpose of the application and
what options are available when interacting with the application.

	
--version

	Print the CPL version number and exit. Useful for submitting bug-reports,
etc.

	
-v, --verbose

	Increase the verbosity of messages printed to the standard output. Use
-vv and -vvv to progressively increase verbosity of output.

	
--no-log

	Disable logging messages from the script to a log file.

	
--cli-logs log_file

	Customize the filename used to capture log messages during execution. This
overrides the configuration parameter log_file provided in the user configuration files.

Available command-line applications

	caelus – Common CPL actions
	caelus cfg – Print CPL configuration

	caelus env – write shell environment file

	caelus clone – Clone a case directory

	caelus tasks – run tasks from a file

	caelus run – run a Caelus executable in the appropriate environment

	caelus logs – process a Caelus solver log file from a run

	caelus clean – clean a Caelus case directory

	caelus_tutorials – Run tutorials

caelus – Common CPL actions

New in version 0.0.2.

The caelus command provides various sub-commands that can be used to perform
common tasks using the CPL library. Currently the following sub-commands (or
actions) are available through the caelus script.

	Action

	Purpose

	cfg

	Print CPL configuration to stdout or file

	env

	Generate an environment file for sourcing within bash or csh shell

	clone

	Clone a case directory

	tasks

	Automatic execution of workflow from a YAML file

	run

	Run a CML executable in the appropriate environment

	logs

	Parse a solver log file and extract data for analysis

	clean

	Clean a case directory after execution

Note

The script also supports the common options documented in
the previous section. Care must be take to include the common options before
the subcommand, i.e.,

Correct usage
caelus -vvv cfg -f caelus.yaml

The following will generate an error
caelus cfg -vvv # ERROR

caelus cfg – Print CPL configuration

Print out the configuration dictionary currently in use by CPL. This will be a
combination of all the options loaded from the configuration files described in
configuration section. By default, the command prints
the YAML-formatted dictionary to the standard output. The output can be
redirected to a file by using the caelus cfg -f option. This is useful
for debugging.

$ caelus cfg -h
usage: caelus cfg [-h] [-f CONFIG_FILE] [-b]

Dump CPL configuration

optional arguments:
 -h, --help show this help message and exit
 -f CONFIG_FILE, --config-file CONFIG_FILE
 Write to file instead of standard output
 -b, --no-backup Overwrite existing config without saving a backup

	
-f output_file, --config-file output_file

	Save the current CPL configuration to the output_file instead of printing
to standard output.

	
-b, --no-backup

	By default, when using the caelus cfg -f CPL will create a backup
of any existing configuration file before writing a new file. This option
overrides the behavior and will not create backups of existing configurations
before overwriting the file.

caelus env – write shell environment file

Write a shell environment file to be sourced/called by the platform specific
shell. This will be a combination of all the options loaded from the
configuration files described in configuration section.
The output can be redirected to a directory by using the caelus env -d option.
This is useful for legacy workflows.

$ caelus env -h
usage: caelus env [-h] [-d WRITE_DIR]

Write environment variables that can be sourced into the SHELL environment

optional arguments:
 -h, --help show this help message and exit
 -d WRITE_DIR, --write-dir WRITE_DIR
 Path where the environment files are written

	
-d write_dir, --write_dir write_dir

	Save the environment file to the write_dir instead of the current working
directory

caelus clone – Clone a case directory

caelus clone takes two mandatory parameters, the source template case
directory, and name of the new case that is created. By default, the new case
directory is created in the current working directory and must not already
exist. CPL will not attempt to overwrite existing directories during clone.

$ caelus clone -h
usage: caelus clone [-h] [-m] [-z] [-s] [-e EXTRA_PATTERNS] [-d BASE_DIR]
 template_dir case_name

Clone a case directory into a new folder.

positional arguments:
 template_dir Valid Caelus case directory to clone.
 case_name Name of the new case directory.

optional arguments:
 -h, --help show this help message and exit
 -m, --skip-mesh skip mesh directory while cloning
 -z, --skip-zero skip 0 directory while cloning
 -s, --skip-scripts skip scripts while cloning
 -e EXTRA_PATTERNS, --extra-patterns EXTRA_PATTERNS
 shell wildcard patterns matching additional files to
 ignore
 -d BASE_DIR, --base-dir BASE_DIR
 directory where the new case directory is created

	
-m, --skip-mesh

	Do not copy the constant/polyMesh directory when cloning. The default
behavior is to copy the mesh along with the case directory.

	
-z, --skip-zero

	Do not copy the 0 directory during clone. The default behavior copies
time t=0 directory.

	
-s, --skip-scripts

	Do not copy any python or YAML scripts during clone.

	
-e pattern, --extra-patterns pattern

	A shell-wildcard pattern used to skip additional files that might exist in
the source directory that must be skipped while cloning the case directory.
This option can be repeated multiple times to provide more than one pattern.

Skip all bash files and text files in the source directory
caelus clone -e "*.sh" -e "*.txt" old_case_dir new_case_dir

	
-d basedir, --base-dir basedir

	By default, the new case directory is created in the current working
directory. This option allows the user to modify the behavior and create the
new case in a different location. Useful for use within scripts.

caelus tasks – run tasks from a file

Read and execute tasks from a YAML-formatted file. Task files could be considered
recipes or workflows. By default, it reads caelus_tasks.yaml from the current
directory. The behavior can be modified to read other file names and locations.

$ caelus tasks -h
usage: caelus tasks [-h] [-f FILE]

Run pre-defined tasks within a case directory read from a YAML-formatted file.

optional arguments:
 -h, --help show this help message and exit
 -f FILE, --file FILE file containing tasks to execute (caelus_tasks.yaml)

	
-f task_file, --file task_file

	Execute the task file named task_file instead of caelus_tasks.yaml in current
working directory

caelus run – run a Caelus executable in the appropriate environment

Run a single Caelus application. The application name is the one mandatory argument.
Additional command arguments can be specified. The behavior can be modified to enble
parallel execution of the application. By default, the application runs from the
current directory. This behavior can be modified to specify the case directory. Note:
when passing cmd_args, -- is required between run and cmd_name so the
cmd_args are parsed correctly. E.g. caelus run -- renumberMesh "-overwrite"

$ caelus run -h
usage: caelus run [-h] [-p] [-l LOG_FILE] [-d CASE_DIR]
 cmd_name [cmd_args [cmd_args ...]]

Run a Caelus executable in the correct environment

positional arguments:
 cmd_name name of the Caelus executable
 cmd_args additional arguments passed to command

optional arguments:
 -h, --help show this help message and exit
 -p, --parallel run in parallel
 -l LOG_FILE, --log-file LOG_FILE
 filename to redirect command output
 -d CASE_DIR, --case-dir CASE_DIR
 path to the case directory

	
-p, --parallel

	Run the executable in parallel

	
-l log_file, --log-file log_file

	By default, a log file named <application>.log is created. This option allows
the user to modify the behavior and create a differently named log file.

	
-d casedir, --case-dir casedir

	By default, executables run from the current working directory. This option
allows the user to modify the behavior and specify the path to the case
directory.

caelus logs – process a Caelus solver log file from a run

Process a single Caelus solver log. The log file name is the one mandatory
argument. Additional command arguments can be specified. By default, the log
file is found in the current directory and the output is written to logs
directory. The behavior can be modified to specify the case directory and output
directory.

$ caelus logs -h
usage: caelus logs [-h] [-l LOGS_DIR] [-d CASE_DIR] [-p] [-f PLOT_FILE] [-w]
 [-i INCLUDE_FIELDS | -e EXCLUDE_FIELDS]
 log_file

Process logfiles for a Caelus run

positional arguments:
log_file log file (e.g., simpleSolver.log)

optional arguments:
-h, --help show this help message and exit
-l LOGS_DIR, --logs-dir LOGS_DIR
 directory where logs are output (default: logs)
-d CASE_DIR, --case-dir CASE_DIR
 path to the case directory
-p, --plot-residuals generate residual time-history plots
-f PLOT_FILE, --plot-file PLOT_FILE
 file where plot is saved
-w, --watch Monitor residuals during a run
-i INCLUDE_FIELDS, --include-fields INCLUDE_FIELDS
 plot residuals for given fields
-e EXCLUDE_FIELDS, --exclude-fields EXCLUDE_FIELDS

	
-l logs_dir, --logs-dir logs_dir

	By default, the log files are output to logs. This option allows
the user to modify the behavior and create a differently named log file
output directory.

	
-d, case_dir, --case-dir case_dir

	By default, the log file is found in the current working directory. This
option allows the user to specify the path to the case directory where the
log file exists.

	
-p, --plot-residuals

	This option allows the user to plot and save the residuals to an image file.

	
-f plot_file, --plot-file plot_file

	By default, plots are saved to residuals.png in the current
working directory. This option allows the user to modify the behavior
and specify a differently named plot file.

	
-w, --watch

	This option allows the user to dynamically monitor residuals for a log file
from a currently run.

	
-i include_fields, --include-fields include_fields

	By default, all field equation residuals are plotted. This option can be
used to only include specific fields in residual plot. Multiple fields
can be provided to this option. For example,

Plot pressure and momentum residuals from simpleSolver case log
caelus logs -p -i "p Ux Uy Uz" simpleSolver.log

	
-e exclude_fields, --exclude-patterns exclude fields

	By default, all field equation residuals are plotted. This option can be
used to exclude specific fields in residual plot. Multiple fields
be provided to this option. For example,

Exclude TKE and omega residuals from simpleSolver case log
caelus logs -p -e "k epsilon" simpleSolver.log

caelus clean – clean a Caelus case directory

Cleans files generated by a run. By default, this function will always
preserve system, constant, and 0 directories as well as any
YAML or python files. The behavior can be modified to presevere
additional files and directories.

$ caelus clean -h
usage: caelus clean [-h] [-d CASE_DIR] [-m] [-z] [-p PRESERVE]

Clean a case directory

optional arguments:
 -h, --help show this help message and exit
 -d CASE_DIR, --case-dir CASE_DIR
 path to the case directory
 -m, --clean-mesh remove polyMesh directory
 -z, --clean-zero remove 0 directory
 -p PRESERVE, --preserve PRESERVE
 shell wildcard patterns of extra files to preserve

	
-d, case_dir, --case-dir case_dir

	By default, the case directory is the current working directory. This
option allows the user to specify the path to the case directory.

	
-m, --clean-mesh

	By default, the polyMesh directory is not removed. This option allows
the user to modify the behavior and remove the polyMesh directory.

	
-z, --clean-zero

	By default, the 0 files are not cleaned. This option allows
the user to modify the behavior and remove the 0 directory.

	
-p preserve_pattern, --preserve preserve_pattern

	A shell-wildcard patterns of files or directories that will not
be cleaned.

caelus_tutorials – Run tutorials

This is a convenience command to automatically run tutorials provided within the
Caelus CML distribution.

$ caelus_tutorials -h
usage: caelus_tutorials [-h] [--version] [-v] [--no-log | --cli-logs CLI_LOGS]
 [-d BASE_DIR] [-c CLONE_DIR] [-f TASK_FILE]
 [-i INCLUDE_PATTERNS | -e EXCLUDE_PATTERNS]

Run Caelus Tutorials

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -v, --verbose increase verbosity of logging. Default: No
 --no-log disable logging of script to file.
 --cli-logs CLI_LOGS name of the log file (caelus_tutorials.log)
 -d BASE_DIR, --base-dir BASE_DIR
 directory where tutorials are run
 -c CLONE_DIR, --clone-dir CLONE_DIR
 copy tutorials from this directory
 --clean clean tutorials from this directory
 -f TASK_FILE, --task-file TASK_FILE
 task file containing tutorial actions
 (run_tutorial.yaml)
 -i INCLUDE_PATTERNS, --include-patterns INCLUDE_PATTERNS
 run tutorial case if it matches the shell wildcard
 pattern
 -e EXCLUDE_PATTERNS, --exclude-patterns EXCLUDE_PATTERNS
 exclude tutorials that match the shell wildcard
 pattern

Caelus Python Library (CPL) v0.0.2

	
-f task_file, --task-file task_file

	The name of the task file used to execute the steps necessary to complete a
tutorial. The default value is run_tutorial.yaml

	
-i pattern, --include-patterns pattern

	A shell wildcard pattern to match tutorial names that must be executed. This
option can be used multiple times to match different patterns. For example,

Run all simpleSolver cases and pisoSolver's cavity case
caelus_tutorials -i "*simpleSolver* -i "*cavity*"

This option is mutually exclusive to caelus_tutorials -e

	
-e pattern, --exclude-patterns pattern

	A shell wildcard pattern to match tutorial names that are skipped during the
tutorial run. This option can be used multiple times to match different
patterns. For example,

Skip motorBikeSS and motorBikeLES cases
caelus_tutorials -e "*motorBike*"

This option is mutually exclusive to caelus_tutorials -i

Caelus Tasks

CPL provides a tasks interface to automate various aspects of the CFD
simulation workflow that can be executed by calling caelus tasks (see
tasks documentation).

Quick tutorial

The tasks interface requires a list of tasks provided in a YAML-formatted file
as shown below (download):

tasks:
 - clean_case:
 remove_zero: no
 remove_mesh: yes

 - run_command:
 cmd_name: blockMesh

 - run_command:
 cmd_name: pisoSolver

 - process_logs:
 log_file: pisoSolver.log
 plot_residuals: true
 residuals_plot_file: residuals.pdf
 residuals_fields: [Ux, Uy]

The file lists a set of actions to be executed sequentially by caelus
tasks. The tasks can accept various options that can be used to further
customize the workflow. A sample interaction is shown below

$ caelus -v tasks -f caelus_tasks.yaml
INFO: Caelus Python Library (CPL) v0.1.0
INFO: Caelus CML version: 7.04
INFO: Loaded tasks from: cavity/caelus_tasks.yaml
INFO: Begin executing tasks in cavity
INFO: Cleaning case directory: cavity
INFO: Executing command: blockMesh
INFO: Executing command: pisoSolver
INFO: Processing log file: pisoSolver.log
INFO: Saved figure: cavity/residuals.pdf
INFO: Residual time history saved to residuals.pdf
INFO: Successfully executed 4 tasks in cavity
INFO: All tasks executed successfully.

For a comprehensive list of task file examples, please consult the
run_tutorial.yaml files in the tutorials directory of Caelus CML
distribution. In particular, the
tutorials/incompressible/pimpleSolver/les/motorBike case provides an
example of a tasks workflow involving two different case directories.

Tasks reference

This section documents the various tasks available currently within CPL and
the options that can be used to customize execution of those tasks.

	The task file must be in YAML format, and must contain one entry tasks
that is a list of tasks to be executed.

	The tasks are executed sequentially in the order provided until an error is
encountered or all tasks are executed successfully.

	The tasks must be invoked from within a valid Caelus case directory (see
task_set for an exception). All filenames in the task file are interpreted
relative to the execution directory where the command is invoked.

run_command – Run CML executables

This task type is used to execute a Caelus CML executable (e.g.,
blockMesh or pimpleSolver). CPL will ensure that the
appropriate version of CML is selected and the runtime enviornment is setup
properly prior to executing the task. The task must provide one mandatory
parameter run_command.cmd_name that is the name of the CML
executable. Several other options are available and are documented below. Example:

- run_command:
 cmd_name: potentialSolver
 cmd_args: "-initialiseUBCs -noFunctionObjects"
 parallel: true

	
run_command.cmd_name

	The name of the CML executable. This option is mandatory.

	
run_command.cmd_args

	Extra arguments that must be passed to the CML executable. It is recommended
that arguments be enclosed in a double-quoted string. Default value is an
empty string.

	
run_command.log_file

	The filename where the output of the command is redirected. By default, it is
the CML executable name with the .log extension appended to it. The user
can change this to any valid filename of their choice using this option.

	
run_command.parallel

	A Boolean flag indicating whether the executable is to be run in parallel
mode. The default value is False. If parallel is True, then the
default options for job scheduler are used from CPL configuration file, but
can be overriden with additional options to run_command.

	
run_command.num_ranks

	The number of MPI ranks for a parallel run.

	
run_command.mpi_extra_args

	Extra arguments to be passed to mpiexec command (e.g.,
hostfile options). As with cmd_args,
enclose the options within quotes.

copy_files – Copy files

This task copies files in a platform-agnostic manner.

	
copy_files.src

	A unix-style file pattern that is used to match the pattern of files to be
copied. The path to the files must be relative to the execution directory,
but can exist in other directories as long as the relative paths are provided
correctly. If the pattern matches multiple files, then
copy_files.dest must be a directory.

	
copy_files.dest

	The destination where the files are to be copied.

copy_tree – Recursively copy directories

This task takes an existing directory (src) and copies it to the
destination. Internally, this task uses copytree [http://docs.python.org/library/shutil.html#shutil.copytree] function to copy the directory, please refer to
Python docs for more details.

Warning

If the destination directory already exists, the directory is deleted before
copying the contents of the source directory. Currently, this task does not
provide a way to copy only non-existent files to the destination. Use with
caution.

	
copy_tree.src

	The source directory that must be recursively copied.

	
copy_tree.dest

	The pathname for the new directory to be created.

	
copy_tree.ignore_patterns

	A list of Unix-style file patterns used to ignore files present in source
directory when copying it to destination. A good example of this is to
prevent copying the contents of polyMesh when copying the contents of
constant from one case directory to another.

	
copy_tree.preserve_symlinks

	A Boolean flag indicating whether symbolic links are preserved when copying.
Linux and Mac OSX only.

clean_case – Clean a case directory

Use this task to clean up a case directory after a run. By default, this task
will preserve all YAML and python files found in the case directory as well as
the 0/ directory. For example,

- clean_case:
 remove_zero: yes
 remove_mesh: no
 preserve: ["0.org"]

	
clean_case.remove_zero

	Boolean flag indicating whether the 0/ directory should be removed.
The default value is False.

	
clean_case.remove_mesh

	Boolean flag indicating whether the constant/polyMesh directory
should be removed. The default value is False.

	
clean_case.preserve

	A list of Unix-style file patterns that match files that should be preserved
within the case directory.

process_logs – Process solver outputs

This task takes one mandatory argument log_file that contains the outputs from a CFD run. The
time-histories of the residuals are extracted and output to files that can be
loaded by gnuplot, or loaded in python using loadtxt [http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html] command
or using Pandas library. Users can also plot the residuals by using the
plot_residuals option. For example,

- process_logs:
 log_file: pimpleSolver.log
 log_directory: pimpleSolver_logs

- process_logs:
 log_file: simpleSolver.log
 plot_residuals: yes
 residuals_plot_file: residuals.pdf
 residuals_fields: [Ux, Uy, p]

	
process_logs.log_file

	The filename containing the solver residual ouputs. This parameter is
mandatory.

	
process_logs.logs_directory

	The directory where the processed residual time-history outputs are stored.
Default: logs within the execution directory.

	
process_logs.plot_residuals

	Boolean flag indicating whether a plot of the convergence time-history is
generated. Default value is False.

	
process_logs.residuals_plot_file

	The file where the plot is saved. Default value is residuals.png. The
user can use an appropriate extension (e.g., .png, .pdf, .jpg) to
change the image format of the plot generated.

	
process_logs.residual_fields

	A list of fields that are plotted. If not provided, all fields available are
plotted.

	
process_logs.plot_continuity_errors

	A Boolean flag indicating whether time-history of continuity errors are
plotted along with residuals.

task_set – Group tasks

A task_set groups a sub-set of tasks that can be executed in a different
case directory. Download an example.

	
task_set.case_dir

	The path to a valid Caelus case directory where the sub-tasks are to be
executed. This parameter is mandatory.

	
task_set.name

	A unique name to identify this task group.

	
task_set.tasks

	The list of sub-tasks. This list can contain any of the tasks that have been
documented above.

Caelus Python API

	caelus.config – Caelus Configuration Infrastructure
	Caelus Python Configuration

	Caelus CML Environment Manager

	caelus.utils – Basic utilities
	Struct Module

	Miscellaneous utilities

	caelus.run – CML Execution Utilities
	Caelus Tasks Manager

	CML Execution Utilities

	Job Scheduler Interface

	caelus.post – Post-processing utilities
	Caelus Log Analyzer

	Caelus Plotting Utilities

	caelus.scripts – CLI App Utilities
	Basic CLI Interface

caelus.config – Caelus Configuration Infrastructure

caelus.config performs the following tasks:

	Configure the behavior of the Caelus python library using YAML based
configuration files.

	Provide an interface to Caelus CML installations and also aid in automated
discovery of installed Caelus versions.

	get_config

	Get the configuration object

	reload_config

	Reset the configuration object

	reset_default_config

	Reset to default configuration

	cml_get_version

	Get the CML environment for the version requested

	cml_get_latest_version

	Get the CML environment for the latest version available.

	CMLEnv

	CML Environment Interface.

Caelus Python Configuration

The config module provides functions and classes for
loading user configuration via YAML files and a central location to configure
the behavior of the Caelus python library. The user configuration is stored in
a dictionary format within the CaelusCfg and can
be modified during runtime by user scripts. Access to the configuration object
is by calling the get_config() method defined within this module which
returns a fully populated instance of the configuration dictionary. This module
also sets up logging (to both console as well as log files) during the
initialization phase.

	
class caelus.config.config.CaelusCfg(*args, **kwds)

	Bases: caelus.utils.struct.Struct

Caelus Configuration Object

A (key, value) dictionary containing all the configuration data parsed from
the user configuration files. It is recommended that users obtain an
instance of this class via the get_config() function instead of
directly instantiating this class.

Initialize an ordered dictionary. The signature is the same as
regular dictionaries, but keyword arguments are not recommended because
their insertion order is arbitrary.

	
yaml_decoder

	alias of StructYAMLLoader

	
yaml_encoder

	alias of StructYAMLDumper

	
write_config(fh=<open file '<stdout>', mode 'w'>)

	Write configuration to file or standard output.

	Parameters

	fh (handle) – An open file handle

	
caelus.config.config.configure_logging(log_cfg=None)

	Configure python logging.

If log_cfg is None, then the basic configuration of python logging
module is used.

See Python Logging Documentation [https://docs.python.org/3.6/library/logging.config.html#logging-config-dictschema] for more information.

	Parameters

	log_cfg – Instance of CaelusCfg

	
caelus.config.config.get_appdata_dir()

	Return the path to the Windows APPDATA directory

	
caelus.config.config.get_caelus_root()

	Get Caelus root directory

In Unix-y systems this returns ${HOME}/Caelus and on Windows it returns
C:\Caelus.

	Returns

	Path to Caelus root directory

	Return type

	path

	
caelus.config.config.get_config(base_cfg=None, init_logging=False)

	Get the configuration object

On the first call, initializes the configuration object by parsing all
available configuration files. Successive invocations return the same
object that can be mutated by the user. The config dictionary can be
reset by invoking reload_config().

	Parameters

	
	base_cfg (CaelusCfg) – A base configuration object that is updated

	init_logging (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, initializes logging

	Returns

	The configuration dictionary

	Return type

	CaelusCfg

	
caelus.config.config.get_cpl_root()

	Return the root path for CPL

	
caelus.config.config.get_default_config()

	Return a fresh instance of the default configuration

This function does not read the caelus.yaml files on the system, and
returns the configurations shipped with CPL.

	Returns

	The default configuration

	Return type

	CaelusCfg

	
caelus.config.config.rcfiles_loaded()

	Return a list of the configuration files that were loaded

	
caelus.config.config.reload_config(base_cfg=None)

	Reset the configuration object

Forces reloading of all the available configuration files and resets
the modifications made by user scripts.

See also: reset_default_config()

	Parameters

	base_cfg – A CMLEnv object to use instead of default

	Returns

	The configuration dictionary

	Return type

	CaelusCfg

	
caelus.config.config.reset_default_config()

	Reset to default configuration

Resets to library default configuration. Unlike
reload_config(), this function does not
load the configuration files.

	Returns

	The configuration dictionary

	Return type

	CaelusCfg

	
caelus.config.config.search_cfg_files()

	Search locations and return all possible configuration files.

The following locations are searched:

	The path pointed by CAELUSRC_SYSTEM

	The user’s home directory ~/.caelus/caelus.yaml on Unix-like
systems, and %APPDATA%/caelus/caelus.yaml on Windows systems.

	The path pointed by CAELUSRC, if defined.

	The file caelus.yaml in the current working directory

	Returns

	List of configuration files available

Caelus CML Environment Manager

cmlenv serves as a replacement for Caelus/OpenFOAM bashrc
files, providing ways to discover installed versions as well as interact with
the installed Caelus CML versions. By default, cmlenv attempts to locate
installed Caelus versions in standard locations:
~/Caelus/caelus-VERSION on Unix-like systems, and in C:Caelus
in Windows systems. Users can override the default behavior and point to
non-standard locations by customizing their Caelus Python configuration file.

	
class caelus.config.cmlenv.CMLEnv(cfg)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

CML Environment Interface.

This class provides an interface to an installed Caelus CML version.

	Parameters

	cfg (CaelusCfg) – The CML configuration object

	
bin_dir

	Return the bin directory for executable

	
build_dir

	Return the build platform directory

	
environ

	Return an environment for running Caelus CML binaries

	
lib_dir

	Return the bin directory for executable

	
mpi_bindir

	Return the MPI executables path for this installation

	
mpi_dir

	Return the MPI directory for this installation

	
mpi_libdir

	Return the MPI library path for this installation

	
project_dir

	Return the project directory path

Typically ~/Caelus/caelus-VERSION

	
root

	Return the root path for the Caelus install

Typically on Linux/OSX this is the ~/Caelus directory.

	
version

	Return the Caelus version

	
caelus.config.cmlenv.cml_get_latest_version()

	Get the CML environment for the latest version available.

	Returns

	The environment object

	Return type

	CMLEnv

	
caelus.config.cmlenv.cml_get_version(version=None)

	Get the CML environment for the version requested

If version is None, then it returns the version set as default in the
configuration file.

	Parameters

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Version string

	Returns

	The environment object

	Return type

	CMLEnv

	
caelus.config.cmlenv.discover_versions(root=None)

	Discover Caelus versions if no configuration is provided.

If no root directory is provided, then the function attempts to search in
path provided by get_caelus_root().

	Parameters

	root (path) – Absolute path to root directory to be searched

caelus.utils – Basic utilities

Collection of low-level utilities that are accessed by other packages within
CPL, and other code snippets that do not fit elsewhere within CPL. The modules
present within utils package must only depend on external libraries or other
modules within util, they must not import modules from other packages within
CPL.

	Struct

	Dictionary that supports both key and attribute access.

	osutils

	Miscellaneous utilities

Struct Module

Implements Struct.

	
class caelus.utils.struct.Struct(*args, **kwds)

	Bases: collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict], _abcoll.MutableMapping

Dictionary that supports both key and attribute access.

Struct is inspired by Matlab struct data structure that is intended to
support both key and attribute access. It has the following features:

	Preserves ordering of members as initialized

	Provides attribute and dictionary-style lookups

	Read/write YAML formatted data

Initialize an ordered dictionary. The signature is the same as
regular dictionaries, but keyword arguments are not recommended because
their insertion order is arbitrary.

	
yaml_decoder

	alias of StructYAMLLoader

	
yaml_encoder

	alias of StructYAMLDumper

	
classmethod from_yaml(stream)

	Initialize mapping from a YAML string.

	Parameters

	stream – A string or valid file handle

	Returns

	YAML data as a python object

	Return type

	Struct

	
classmethod load_yaml(filename)

	Load a YAML file

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to YAML file

	Returns

	YAML data as python object

	Return type

	Struct

	
merge(*args)

	Recursively update dictionary

Merge entries from maps provided such that new entries are added and
existing entries are updated.

	
to_yaml(stream=None, default_flow_style=False, **kwargs)

	Convert mapping to YAML format.

	Parameters

	
	stream (file) – A file handle where YAML is output

	default_flow_style (bool [https://docs.python.org/3/library/functions.html#bool]) –
	False - pretty printing

	True - No pretty printing

	
class caelus.utils.struct.StructMeta

	Bases: abc.ABCMeta [https://docs.python.org/3/library/abc.html#abc.ABCMeta]

YAML interface registration

Simplify the registration of custom yaml loader/dumper classes for Struct
class hierarchy.

	
caelus.utils.struct.gen_yaml_decoder(cls)

	Generate a custom YAML decoder with non-default mapping class

	Parameters

	cls – Class used for mapping

	
caelus.utils.struct.gen_yaml_encoder(cls)

	Generate a custom YAML encoder with non-default mapping class

	Parameters

	cls – Class used for mapping

	
caelus.utils.struct.merge(a, b, *args)

	Recursively merge mappings and return consolidated dict.

Accepts a variable number of dictionary mappings and returns a new
dictionary that contains the merged entries from all dictionaries. Note
that the update occurs left to right, i.e., entries from later dictionaries
overwrite entries from preceeding ones.

	Returns

	The consolidated map

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Miscellaneous utilities

This module implements functions that are utilized throughout CPL. They mostly
provide a higher-level interface to various os.path functions to make it
easier to perform some tasks.

	set_work_dir

	A with-block to execute code in a given directory.

	ensure_directory

	Check if directory exists, if not, create it.

	abspath

	Return the absolute path of the directory.

	ostype

	String indicating the operating system type

	timestamp

	Return a formatted timestamp for embedding in files

	
caelus.utils.osutils.abspath(pname)

	Return the absolute path of the directory.

This function expands the user home directory as well as any shell
variables found in the path provided and returns an absolute path.

	Parameters

	pname (path) – Pathname to be expanded

	Returns

	Absolute path after all substitutions

	Return type

	path

	
caelus.utils.osutils.backup_file(fname, time_format=None, time_zone=<UTC>)

	Given a filename return a timestamp based backup filename

	Parameters

	
	time_format – A time formatter suitable for strftime

	time_zone – Time zone used to generate timestamp (Default: UTC)

	Returns

	A timestamped filename suitable for creating backups

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
caelus.utils.osutils.clean_directory(dirname, preserve_patterns=None)

	Utility function to remove files and directories from a given directory.

User can specify a list of filename patterns to preserve with the
preserve_patterns argument. These patterns can contain shell wildcards
to glob multiple files.

	Parameters

	
	dirname (path) – Absolute path to the directory whose entries are purged.

	preserve_patterns (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of shell wildcard patterns

	
caelus.utils.osutils.copy_tree(srcdir, destdir, symlinks=False, ignore_func=None)

	Enchanced version of shutil.copytree

	removes the output directory if it already exists.

	Parameters

	
	srcdir (path) – path to source directory to be copied.

	destdir (path) – path (or new name) of destination directory.

	symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) – as in shutil.copytree

	ignore_func (func) – as in shutil.copytree

	
caelus.utils.osutils.ensure_directory(dname)

	Check if directory exists, if not, create it.

	Parameters

	dname (path) – Directory name to check for

	Returns

	Absolute path to the directory

	Return type

	Path

	
caelus.utils.osutils.ostype()

	String indicating the operating system type

	Returns

	One of [“linux”, “darwin”, “windows”]

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
caelus.utils.osutils.remove_files_dirs(paths, basedir=None)

	Remove files and/or directories

	Parameters

	
	paths (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of file paths to delete (no patterns allowed)

	basedir (path) – Base directory to search

	
caelus.utils.osutils.set_work_dir(*args, **kwds)

	A with-block to execute code in a given directory.

	Parameters

	
	dname (path) – Path to the working directory.

	create (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, directory is created prior to execution

	Returns

	Absolute path to the execution directory

	Return type

	path

Example

>>> with osutils.set_work_dir("results_dir", create=True) as wdir:
... with open(os.path.join(wdir, "results.dat"), 'w') as fh:
... fh.write("Data")

	
caelus.utils.osutils.timestamp(time_format=None, time_zone=<UTC>)

	Return a formatted timestamp for embedding in files

	Parameters

	
	time_format – A time formatter suitable for strftime

	time_zone – Time zone used to generate timestamp (Default: UTC)

	Returns

	A formatted time string

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
caelus.utils.osutils.user_home_dir()

	Return the absolute path of the user’s home directory

	
caelus.utils.osutils.username()

	Return the username of the current user

caelus.run – CML Execution Utilities

Caelus Tasks Manager

	
class caelus.run.tasks.Tasks

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Caelus Tasks.

Tasks provides a simple automated workflow interface that provides various
pre-defined actions via a YAML file interface.

The tasks are defined as methods with a cmd_ prefix and are
automaticaly converted to task names. Users can create additional tasks by
subclassing and adding additional methods with cmd_ prefix. These
methods accept one argument options, a dictionary containing parameters
provided by the user for that particular task.

	
cmd_clean_case(options)

	Clean a case directory

	
cmd_copy_files(options)

	Copy given file(s) to the destination.

	
cmd_copy_tree(options)

	Recursively copy a given directory to the destination.

	
cmd_exec_tasks(options)

	Execute another task file

	
cmd_process_logs(options)

	Process logs for a case

	
cmd_run_command(options)

	Execute a Caelus CML binary.

	
cmd_task_set(options)

	A subset of tasks for grouping

	
classmethod load(task_file='caelus_tasks.yaml', task_node='tasks')

	Load tasks from a YAML file.

If exedir is None then the execution directory is set to the
directory where the tasks file is found.

	Parameters

	task_file (filename) – Path to the YAML file

	
case_dir = None

	Directory where the tasks are to be executed

	
env = None

	Caelus environment used when executing tasks

	
task_file = None

	File that was used to load tasks

	
tasks = None

	List of tasks that must be performed

	
class caelus.run.tasks.TasksMeta(name, bases, cdict)

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Process available tasks within each Tasks class.

TasksMeta is a metaclass that automates the process of creating a
lookup table for tasks that have been implemented within the Tasks
and any of its subclasses. Upon initialization of the class, it populates a
class attribute task_map that contains a mapping between the task name
(used in the tasks YAML file) and the corresponding method executed by the
Tasks class executed.

CML Execution Utilities

	
caelus.run.core.clean_casedir(casedir, preserve_extra=None, preserve_zero=True, purge_mesh=False)

	Clean a Caelus case directory.

Cleans files generated by a run. By default, this function will always
preserve system, constant, and 0 directories as well as any
YAML or python files. Additional files and directories can be preserved by
using the preserve_extra option that accepts a list of shell wildcard
patterns of files/directories that must be preserved.

	Parameters

	
	casedir (path) – Absolute path to a case directory.

	preserve_extra (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of shell wildcard patterns to preserve

	purge_mesh (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, also removes mesh from constant/polyMesh

	preserve_zero (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, removes the 0 directory

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – clean_casedir will refuse to remove files from a directory
that is not a valid Caelus case directory.

	
caelus.run.core.clean_polymesh(casedir, region=None, preserve_patterns=None)

	Clean the polyMesh from the given case directory.

	Parameters

	
	casedir (path) – Path to the case directory

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – Mesh region to delete

	preserve_patterns (list [https://docs.python.org/3/library/stdtypes.html#list]) – Shell wildcard patterns of files to preserve

	
caelus.run.core.clone_case(casedir, template_dir, copy_polymesh=True, copy_zero=True, copy_scripts=True, extra_patterns=None)

	Clone a Caelus case directory.

	Parameters

	
	casedir (path) – Absolute path to new case directory.

	template_dir (path) – Case directory to be cloned

	copy_polymesh (bool [https://docs.python.org/3/library/functions.html#bool]) – Copy contents of constant/polyMesh to new case

	copy_zero (bool [https://docs.python.org/3/library/functions.html#bool]) – Copy time=0 directory to new case

	copy_scripts (bool [https://docs.python.org/3/library/functions.html#bool]) – Copy python and YAML files

	extra_patterns (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of shell wildcard patterns for copying

	Returns

	Absolute path to the newly cloned directory

	Return type

	path

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – If either the casedir exists or if the template_dir
does not exist or is not a valid Caelus case directory.

	
caelus.run.core.find_caelus_recipe_dirs(basedir, action_file='caelus_tasks.yaml')

	Return case directories that contain action files.

A case directory with action file is determined if the directory succeeds
checks in is_caelus_dir() and also contains the action file specified
by the user.

	Parameters

	
	basedir (path) – Top-level directory to traverse

	action_file (filename) – Default is caelus_tasks.yaml

	Yields

	Path to the case directory with action files

	
caelus.run.core.find_case_dirs(basedir)

	Recursively search for case directories existing in a path.

	Parameters

	basedir (path) – Top-level directory to traverse

	Yields

	Absolute path to the case directory

	
caelus.run.core.find_recipe_dirs(basedir, action_file='caelus_tasks.yaml')

	Return directories that contain the action files

This behaves differently than find_caelus_recipe_dirs() in that it
doesn’t require a valid case directory. It assumes that the case
directories are sub-directories and this task file acts on multiple
directories.

	Parameters

	
	basedir (path) – Top-level directory to traverse

	action_file (filename) – Default is caelus_tasks.yaml

	Yields

	Path to the case directory with action files

	
caelus.run.core.get_mpi_size(casedir)

	Determine the number of MPI ranks to run

	
caelus.run.core.is_caelus_casedir(root=None)

	Check if the path provided looks like a case directory.

A directory is determined to be an OpenFOAM/Caelus case directory if the
system, constant, and system/controlDict exist. No check is
performed to determine whether the case directory will actually run or if a
mesh is present.

	Parameters

	root (path) – Top directory to start traversing (default: CWD)

Job Scheduler Interface

This module provides a unified interface to submitting serial, local-MPI
parallel, and parallel jobs on high-performance computing (HPC) queues.

	
class caelus.run.hpc_queue.HPCQueue(name, cml_env=None, **kwargs)

	Abstract base class for job submission interface

	
name

	str – Job name

	
queue

	str – Queue/partition where job is submitted

	
account

	str – Account the job is charged to

	
num_nodes

	int – Number of nodes requested

	
num_ranks

	int – Number of MPI ranks

	
stdout

	path – Filename where standard out is redirected

	
stderr

	path – Filename where standard error is redirected

	
join_outputs

	bool – Merge stdout/stderr to same file

	
mail_opts

	str – Mail options (see specific queue implementation)

	
email_address

	str – Email address for notifications

	
qos

	str – Quality of service

	
time_limit

	str – Wall clock time limit

	
shell

	str – shell to use for scripts

	
mpi_extra_args

	str – additional arguments for MPI

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the job

	cml_env (CMLEnv) – Environment used for execution

	
static delete(job_id)

	Delete a job from the queue

	
get_queue_settings()

	Return a string with all the necessary queue options

	
static is_job_scheduler()

	Is this a job scheduler

	
static is_parallel()

	Flag indicating whether the queue type can support parallel runs

	
prepare_mpi_cmd()

	Prepare the MPI invocation

	
process_run_env()

	Populate the run variables for script

	
classmethod submit(script_file, job_dependencies=None, extra_args=None, dep_type=None)

	Submit the job to the queue

	
update(settings)

	Update queue settings from the given dictionary

	
write_script(script_name=None)

	Write a submission script using the arguments provided

	Parameters

	script_name (path) – Name of the script file

	
queue_name = '_ERROR_'

	Identifier used for queue

	
script_body

	The contents of the script submitted to scheduler

	
class caelus.run.hpc_queue.PBSQueue(name, cml_env=None, **kwargs)

	PBS Queue Interface

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the job

	cml_env (CMLEnv) – Environment used for execution

	
static delete(job_id)

	Delete the PBS batch job using job ID

	
get_queue_settings()

	Return all PBS options suitable for embedding in script

	
classmethod submit(script_file, job_dependencies=None, extra_args=None, dep_type='afterok')

	Submit a PBS job using qsub command

job_dependencies is a list of PBS job IDs. The submitted job will
run depending the status of the dependencies.

extra_args is a dictionary of arguments passed to qsub command.

The job ID returned by this method can be used as an argument to delete
method or as an entry in job_dependencies for a subsequent job
submission.

	Parameters

	
	script_file (path) – Script provided to sbatch command

	job_dependencies (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of jobs to wait for

	extra_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Extra SLURM arguments

	Returns

	Job ID as a string

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class caelus.run.hpc_queue.ParallelJob(name, cml_env=None, **kwargs)

	Interface to a parallel job

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the job

	cml_env (CMLEnv) – Environment used for execution

	
static is_parallel()

	Flag indicating whether the queue type can support parallel runs

	
prepare_mpi_cmd()

	Prepare the MPI invocation

	
class caelus.run.hpc_queue.SerialJob(name, cml_env=None, **kwargs)

	Interface to a serial job

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the job

	cml_env (CMLEnv) – Environment used for execution

	
static delete(job_id)

	Delete a job from the queue

	
get_queue_settings()

	Return queue settings

	
static is_job_scheduler()

	Flag indicating whether this is a job scheduler

	
static is_parallel()

	Flag indicating whether the queue type can support parallel runs

	
prepare_mpi_cmd()

	Prepare the MPI invocation

	
classmethod submit(script_file, job_dependencies=None, extra_args=None)

	Submit the job to the queue

	
class caelus.run.hpc_queue.SlurmQueue(name, cml_env=None, **kwargs)

	Interface to SLURM queue manager

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the job

	cml_env (CMLEnv) – Environment used for execution

	
static delete(job_id)

	Delete the SLURM batch job using job ID

	
get_queue_settings()

	Return all SBATCH options suitable for embedding in script

	
prepare_srun_cmd()

	Prepare the call to SLURM srun command

	
classmethod submit(script_file, job_dependencies=None, extra_args=None, dep_type='afterok')

	Submit to SLURM using sbatch command

job_dependencies is a list of SLURM job IDs. The submitted job will
not run until after all the jobs provided in this list have been
completed successfully.

extra_args is a dictionary of extra arguments to be passed to
sbatch command. Note that this can override options provided in the
script file as well as introduce additional options during submission.

dep_type can be one of: after, afterok, afternotok afterany

The job ID returned by this method can be used as an argument to delete
method or as an entry in job_dependencies for a subsequent job
submission.

	Parameters

	
	script_file (path) – Script provided to sbatch command

	job_dependencies (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of jobs to wait for

	extra_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Extra SLURM arguments

	dep_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Dependency type

	Returns

	Job ID as a string

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
caelus.run.hpc_queue.caelus_execute(cmd, env=None, stdout=<open file '<stdout>', mode 'w'>, stderr=<open file '<stderr>', mode 'w'>)

	Execute a CML command with the right environment setup

A wrapper around subprocess.Popen to set up the correct environment before
invoing the CML executable.

The command can either be a string or a list of arguments as appropriate
for Caelus executables.

Examples

caelus_execute(“blockMesh -help”)

	Parameters

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The command to be executed

	env (CMLEnv) – An instance representing the CML installation
(default: latest)

	stdout – A file handle where standard output is redirected

	stderr – A file handle where standard error is redirected

	Returns

	The task instance

	Return type

	subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen]

	
caelus.run.hpc_queue.get_job_scheduler(queue_type=None)

	Return an instance of the job scheduler

caelus.post – Post-processing utilities

Provides log analysis and plotting utilities

	SolverLog

	Caelus solver log file interface.

	CaelusPlot

	Caelus Data Plotting Interface

Caelus Log Analyzer

This module provides utilities to parse and extract information from solver
outputs (log files) that can be used to monitor and analyze the convergence of
runs. It implements the SolverLog class that can be used to access
time histories of residuals for various fields of interest.

Example

>>> logs = SolverLog()
>>> print ("Available fields: ", logs.fields)
>>> ux_residuals = logs.residual("Ux")

The actual extraction of the logs is performed by LogProcessor which
uses regular expressions to match lines of interest and convert them into
tabular files suitable for loading with numpy.loadtxt or
pandas.read_table.

	
class caelus.post.logs.LogProcessor(logfile, case_dir=None, logs_dir='logs')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Process the log file and extract information for analysis.

This is a low-level utility to parse log files and extract information
using regular expressions from the log file. Users should interact with
solver output using the SolverLog class.

	Parameters

	
	logfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Caelus log file

	casedir (path) – Path to the case directory (default: cwd)

	logs_dir (path) – Relative path to the directory where logs
are written

	
add_rule(regexp, actions)

	Add a user-defined rule for processing

	Parameters

	
	regexp (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that can be compiled into a regexp

	action (func) – A coroutine that can consume matching patterns

	
bounding_processor(*args, **kwargs)

	Process the bounding lines

	
completion_processor(*args, **kwargs)

	Process End line indicating solver completion

	
continuity_processor(*args, **kwargs)

	Process continuity error lines from log file

	
convergence_processor(*args, **kwargs)

	Process convergence information (steady solvers only)

	
courant_processor(*args, **kwargs)

	Process Courant Number lines

	
exec_time_processor(*args, **kwargs)

	Process execution/clock time lines

	
extend_rule(line_type, actions)

	Extend a pre-defined regexp with extra functions

The default action for LogProcessor is to output processed lines into
files. Additional actions on pre-defined lines (e.g., “time”) can be
hooked via this method.

	Parameters

	
	line_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pre-defined line type

	actions (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of coroutines that receive the matching lines

	
residual_processor(*args, **kwargs)

	Process a residual line and output data to the relevant file.

	
time_processor(*args, **kwargs)

	Processor for the Time line in log files

	
watch_file(target=None, wait_time=0.1)

	Process a log file for an in-progress run.

This method takes one parameter, target, a coroutine that is called
at the end of every timestep. See
LogWatcher for an example of using target
to plot residuals for monitoring the run.

	Parameters

	
	target (coroutine) – A consumer acting on the data

	wait_time (seconds) – Wait time between checking the log file for
updates

	
bound_files = None

	Open file handles for bounding outputs

	
case_dir = None

	Absolute path to the case directory

	
converged = None

	Flag indicating convergence message in logs

	
converged_time = None

	Timestep when the steady state solver converged

	
current_state

	Return the current state of the logs processor

	
logfile = None

	User-supplied log file (relative to case directory)

	
logs_dir = None

	Absolute path to the directory containing processed logs

	
res_files = None

	Open file handles for the residual outputs

	
solve_completed = None

	Flag indicating solver completion in logs (if End is found)

	
subiter_map = None

	(variable, subIteration) pairs tracking the number of predictor
subIterations for each flow variable

	
time = None

	Track the latest time that was processed by the utility

	
time_str = None

	Time as a string (for output)

	
class caelus.post.logs.SolverLog(case_dir=None, logs_dir='logs', force_reload=False, logfile=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Caelus solver log file interface.

SolverLog extracts information from solver outputs and allows
interaction with the log data as numpy.ndarray or pandas.Dataframe
objects.

	Parameters

	
	case_dir (path) – Absolute path to case directory

	logs_dir (path) – Path to logs directory relative to case_dir

	force_reload (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, force reread of the log file even if
the logs were processed previously.

	logfile (file) – If force_reload, then log file to process

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – An error is raised if no logs directory is available
and the user has not provided a logfile that can be processed
on the fly during initialization.

	
bounding_var(field)

	Return the bounding information for a field

	
continuity_errors()

	Return the time history of continuity errors

	
residual(field, all_cols=False)

	Return the residual time-history for a field

Caelus Plotting Utilities

This module provides the capability to plot various quantities of interest
using matplotlib through CaelusPlot.

	
class caelus.post.plots.CaelusPlot(casedir=None, plotdir='results')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Caelus Data Plotting Interface

	Currently implemented:

	
	Plot residual time history

	Plot convergence of forces and force coeffcients

	Parameters

	
	casedir (path) – Path to the case directory

	plotdir (path) – Directory where figures are saved

	
plot_force_coeffs_hist(plotfile=None, dpi=300, **kwargs)

	Plot force coefficients

	Parameters

	
	func_object (str [https://docs.python.org/3/library/stdtypes.html#str]) – The function object used in controlDict

	plotfile – File to save plot (e.g., residuals.png)

	dpi – Resolution for saving plots (default=300)

	
plot_forces_hist(plotfile=None, dpi=300, **kwargs)

	Plot forces

	Parameters

	
	func_object (str [https://docs.python.org/3/library/stdtypes.html#str]) – The function object used in controlDict

	plotfile – File to save plot (e.g., residuals.png)

	dpi – Resolution for saving plots (default=300)

	
plot_residuals_hist(plotfile=None, dpi=300, **kwargs)

	Plot time-history of residuals for a Caelus run

	Parameters

	
	fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – Plot residuals only for the fields in this list

	plotfile – File to save plot (e.g., residuals.png)

	dpi – Resolution for saving plots (default=300)

	
casedir = None

	Path to the case directory

	
plot_continuity_errors = None

	Flag indicating whether continuity errors are plotted along with
residuals

	
plotdir = None

	Path to plots output directory

	
solver_log = None

	Instance of SolverLog

	
class caelus.post.plots.LogWatcher(logfile, case_dir=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Real-time log monitoring utility

	Parameters

	
	logfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the Caelus log file

	casedir (path) – Path to the case directory (default: cwd)

	
continuity_processor(*args, **kwargs)

	Capture continuity errors for plot updates

	
plot_residuals(*args, **kwargs)

	Update plot for residuals

	
residual_processor(*args, **kwargs)

	Capture residuals for plot updates

	
skip_field(field)

	Helper function to determine if field must be processed

	
time_processor(*args, **kwargs)

	Capture time array

	
plot_fields = None

	List of fields to plot. If None, plots all available fields

	
skip_fields = None

	List of fields to skip. If None, plots all available fields

	
time_array = None

	Time array used for plotting data

	
class caelus.post.plots.PlotsMeta

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Provide interactive and non-interactive versions of plot methods.

This metaclass automatically wraps methods starting with _plot such
that these methods can be used in both interactive and non-interactive
modes. Non-interactive modes are automatically enabled if the user provides
a file name to save the resulting figure.

	
caelus.post.plots.make_plot_method(func)

	Make a wrapper plot method

	
caelus.post.plots.mpl_settings(*args, **kwds)

	Temporarily switch matplotlib settings for a plot

caelus.scripts – CLI App Utilities

Basic CLI Interface

Defines the base classes that are used to build the CLI scripts.

	
class caelus.scripts.core.CaelusScriptBase(name=None, args=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for all Caelus CLI applications.

Defines the common functionality for simple scripts and scripts with
sub-commands that are used to access functionality from the library without
writing additional python scripts.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Custom name used in messages

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pass arguments instead of using sys.argv

	
cli_options()

	Setup the command line options and arguments

	
setup_logging(log_to_file=True, log_file=None, verbose_level=0, quiet=False)

	Setup logging for the script.

	Parameters

	
	log_to_file (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, script will log to file

	log_file (path) – Filename to log

	verbose_level (int [https://docs.python.org/3/library/functions.html#int]) – Level of verbosity

	
args = None

	Arugments provided by user at the command line

	
description = 'Caelus CLI Application'

	Description of the CLI app used in help messages

	
epilog = 'Caelus Python Library (CPL) v0.1.0'

	Epilog for help messages

	
name = None

	Custom name when invoked from a python interface instead of command
line

	
parser = None

	Instance of the ArgumentParser used to parse command line arguments

	
class caelus.scripts.core.CaelusSubCmdScript(name=None, args=None)

	Bases: caelus.scripts.core.CaelusScriptBase

A CLI app with sub-commands.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Custom name used in messages

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pass arguments instead of using sys.argv

	
cli_options()

	Setup sub-parsers.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 caelus	

 	
 	
 caelus.config	

 	
 	
 caelus.config.cmlenv	

 	
 	
 caelus.config.config	

 	
 	
 caelus.post	

 	
 	
 caelus.post.logs	

 	
 	
 caelus.post.plots	

 	
 	
 caelus.run.core	

 	
 	
 caelus.run.hpc_queue	

 	
 	
 caelus.run.tasks	

 	
 	
 caelus.scripts.core	

 	
 	
 caelus.utils	

 	
 	
 caelus.utils.osutils	

 	
 	
 caelus.utils.struct	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

Symbols

 	
 	
 --cli-logs log_file

 	cpl command line option

 	
 --no-log

 	cpl command line option

 	
 --version

 	cpl command line option

 	
 -b, --no-backup

 	caelus-cfg command line option

 	
 -d basedir, --base-dir basedir

 	caelus-clone command line option

 	
 -d casedir, --case-dir casedir

 	caelus-run command line option

 	
 -d write_dir, --write_dir write_dir

 	caelus-env command line option

 	
 -d, case_dir, --case-dir case_dir

 	caelus-clean command line option

 	caelus-logs command line option

 	
 -e exclude_fields, --exclude-patterns exclude fields

 	caelus-logs command line option

 	
 -e pattern, --exclude-patterns pattern

 	caelus_tutorials command line option

 	
 -e pattern, --extra-patterns pattern

 	caelus-clone command line option

 	
 -f output_file, --config-file output_file

 	caelus-cfg command line option

 	
 -f plot_file, --plot-file plot_file

 	caelus-logs command line option

 	
 -f task_file, --file task_file

 	caelus-tasks command line option

 	
 -f task_file, --task-file task_file

 	caelus_tutorials command line option

 	
 	
 -h, --help

 	cpl command line option

 	
 -i include_fields, --include-fields include_fields

 	caelus-logs command line option

 	
 -i pattern, --include-patterns pattern

 	caelus_tutorials command line option

 	
 -l log_file, --log-file log_file

 	caelus-run command line option

 	
 -l logs_dir, --logs-dir logs_dir

 	caelus-logs command line option

 	
 -m, --clean-mesh

 	caelus-clean command line option

 	
 -m, --skip-mesh

 	caelus-clone command line option

 	
 -p preserve_pattern, --preserve preserve_pattern

 	caelus-clean command line option

 	
 -p, --parallel

 	caelus-run command line option

 	
 -p, --plot-residuals

 	caelus-logs command line option

 	
 -s, --skip-scripts

 	caelus-clone command line option

 	
 -v, --verbose

 	cpl command line option

 	
 -w, --watch

 	caelus-logs command line option

 	
 -z, --clean-zero

 	caelus-clean command line option

 	
 -z, --skip-zero

 	caelus-clone command line option

A

 	
 	abspath() (in module caelus.utils.osutils)

 	account (caelus.run.hpc_queue.HPCQueue attribute)

 	
 	add_rule() (caelus.post.logs.LogProcessor method)

 	args (caelus.scripts.core.CaelusScriptBase attribute)

B

 	
 	backup_file() (in module caelus.utils.osutils)

 	bin_dir (caelus.config.cmlenv.CMLEnv attribute)

 	bound_files (caelus.post.logs.LogProcessor attribute)

 	
 	bounding_processor() (caelus.post.logs.LogProcessor method)

 	bounding_var() (caelus.post.logs.SolverLog method)

 	build_dir (caelus.config.cmlenv.CMLEnv attribute)

C

 	
 	
 caelus

 	CPL configuration value

 	caelus (module)

 	
 caelus-cfg command line option

 	-b, --no-backup

 	-f output_file, --config-file output_file

 	
 caelus-clean command line option

 	-d, case_dir, --case-dir case_dir

 	-m, --clean-mesh

 	-p preserve_pattern, --preserve preserve_pattern

 	-z, --clean-zero

 	
 caelus-clone command line option

 	-d basedir, --base-dir basedir

 	-e pattern, --extra-patterns pattern

 	-m, --skip-mesh

 	-s, --skip-scripts

 	-z, --skip-zero

 	
 caelus-env command line option

 	-d write_dir, --write_dir write_dir

 	
 caelus-logs command line option

 	-d, case_dir, --case-dir case_dir

 	-e exclude_fields, --exclude-patterns exclude fields

 	-f plot_file, --plot-file plot_file

 	-i include_fields, --include-fields include_fields

 	-l logs_dir, --logs-dir logs_dir

 	-p, --plot-residuals

 	-w, --watch

 	
 caelus-run command line option

 	-d casedir, --case-dir casedir

 	-l log_file, --log-file log_file

 	-p, --parallel

 	
 caelus-tasks command line option

 	-f task_file, --file task_file

 	
 caelus.caelus_cml

 	CPL configuration value

 	
 caelus.caelus_cml.default

 	CPL configuration value

 	
 caelus.caelus_cml.versions

 	CPL configuration value

 	
 caelus.caelus_cml.versions.build_option

 	CPL configuration value

 	
 caelus.caelus_cml.versions.mpi_bin_path

 	CPL configuration value

 	
 caelus.caelus_cml.versions.mpi_lib_path

 	CPL configuration value

 	
 caelus.caelus_cml.versions.mpi_root

 	CPL configuration value

 	
 caelus.caelus_cml.versions.path

 	CPL configuration value

 	
 caelus.caelus_cml.versions.version

 	CPL configuration value

 	caelus.config (module)

 	caelus.config.cmlenv (module)

 	caelus.config.config (module)

 	
 caelus.cpl

 	CPL configuration value

 	
 caelus.cpl.conda_settings

 	CPL configuration value

 	
 caelus.cpl.python_env_name

 	CPL configuration value

 	
 caelus.cpl.python_env_type

 	CPL configuration value

 	
 caelus.logging

 	CPL configuration value

 	
 caelus.logging.log_file

 	CPL configuration value

 	
 caelus.logging.log_to_file

 	CPL configuration value

 	caelus.post (module)

 	caelus.post.logs (module)

 	caelus.post.plots (module)

 	caelus.run.core (module)

 	caelus.run.hpc_queue (module)

 	caelus.run.tasks (module)

 	caelus.scripts.core (module)

 	
 caelus.system

 	CPL configuration value

 	
 caelus.system.always_use_scheduler

 	CPL configuration value

 	
 caelus.system.job_scheduler

 	CPL configuration value

 	
 caelus.system.scheduler_defaults

 	CPL configuration value

 	caelus.utils (module)

 	caelus.utils.osutils (module)

 	caelus.utils.struct (module)

 	caelus_execute() (in module caelus.run.hpc_queue)

 	CAELUS_PROJECT_DIR

 	
 caelus_scripts

 	CPL configuration value

 	
 caelus_tutorials command line option

 	-e pattern, --exclude-patterns pattern

 	-f task_file, --task-file task_file

 	-i pattern, --include-patterns pattern

 	
 caelus_user

 	CPL configuration value

 	CaelusCfg (class in caelus.config.config)

 	CaelusPlot (class in caelus.post.plots)

 	CAELUSRC, [1]

 	CAELUSRC_SYSTEM, [1]

 	CaelusScriptBase (class in caelus.scripts.core)

 	CaelusSubCmdScript (class in caelus.scripts.core)

 	
 	case_dir (caelus.post.logs.LogProcessor attribute)

 	(caelus.run.tasks.Tasks attribute)

 	casedir (caelus.post.plots.CaelusPlot attribute)

 	
 clean_case.preserve

 	CPL task option

 	
 clean_case.remove_mesh

 	CPL task option

 	
 clean_case.remove_zero

 	CPL task option

 	clean_casedir() (in module caelus.run.core)

 	clean_directory() (in module caelus.utils.osutils)

 	clean_polymesh() (in module caelus.run.core)

 	cli_options() (caelus.scripts.core.CaelusScriptBase method)

 	(caelus.scripts.core.CaelusSubCmdScript method)

 	clone_case() (in module caelus.run.core)

 	cmd_clean_case() (caelus.run.tasks.Tasks method)

 	cmd_copy_files() (caelus.run.tasks.Tasks method)

 	cmd_copy_tree() (caelus.run.tasks.Tasks method)

 	cmd_exec_tasks() (caelus.run.tasks.Tasks method)

 	cmd_process_logs() (caelus.run.tasks.Tasks method)

 	cmd_run_command() (caelus.run.tasks.Tasks method)

 	cmd_task_set() (caelus.run.tasks.Tasks method)

 	cml_get_latest_version() (in module caelus.config.cmlenv)

 	cml_get_version() (in module caelus.config.cmlenv)

 	CMLEnv (class in caelus.config.cmlenv)

 	completion_processor() (caelus.post.logs.LogProcessor method)

 	configure_logging() (in module caelus.config.config)

 	continuity_errors() (caelus.post.logs.SolverLog method)

 	continuity_processor() (caelus.post.logs.LogProcessor method)

 	(caelus.post.plots.LogWatcher method)

 	converged (caelus.post.logs.LogProcessor attribute)

 	converged_time (caelus.post.logs.LogProcessor attribute)

 	convergence_processor() (caelus.post.logs.LogProcessor method)

 	
 copy_files.dest

 	CPL task option

 	
 copy_files.src

 	CPL task option

 	copy_tree() (in module caelus.utils.osutils)

 	
 copy_tree.dest

 	CPL task option

 	
 copy_tree.ignore_patterns

 	CPL task option

 	
 copy_tree.preserve_symlinks

 	CPL task option

 	
 copy_tree.src

 	CPL task option

 	courant_processor() (caelus.post.logs.LogProcessor method)

 	
 cpl command line option

 	--cli-logs log_file

 	--no-log

 	--version

 	-h, --help

 	-v, --verbose

 	
 CPL configuration value

 	caelus

 	caelus.caelus_cml

 	caelus.caelus_cml.default

 	caelus.caelus_cml.versions

 	caelus.caelus_cml.versions.build_option

 	caelus.caelus_cml.versions.mpi_bin_path

 	caelus.caelus_cml.versions.mpi_lib_path

 	caelus.caelus_cml.versions.mpi_root

 	caelus.caelus_cml.versions.path

 	caelus.caelus_cml.versions.version

 	caelus.cpl

 	caelus.cpl.conda_settings

 	caelus.cpl.python_env_name

 	caelus.cpl.python_env_type

 	caelus.logging

 	caelus.logging.log_file

 	caelus.logging.log_to_file

 	caelus.system

 	caelus.system.always_use_scheduler

 	caelus.system.job_scheduler

 	caelus.system.scheduler_defaults

 	caelus_scripts

 	caelus_user

 	
 CPL task option

 	clean_case.preserve

 	clean_case.remove_mesh

 	clean_case.remove_zero

 	copy_files.dest

 	copy_files.src

 	copy_tree.dest

 	copy_tree.ignore_patterns

 	copy_tree.preserve_symlinks

 	copy_tree.src

 	process_logs.log_file

 	process_logs.logs_directory

 	process_logs.plot_continuity_errors

 	process_logs.plot_residuals

 	process_logs.residual_fields

 	process_logs.residuals_plot_file

 	run_command.cmd_args

 	run_command.cmd_name

 	run_command.log_file

 	run_command.mpi_extra_args

 	run_command.num_ranks

 	run_command.parallel

 	task_set.case_dir

 	task_set.name

 	task_set.tasks

 	current_state (caelus.post.logs.LogProcessor attribute)

D

 	
 	delete() (caelus.run.hpc_queue.HPCQueue static method)

 	(caelus.run.hpc_queue.PBSQueue static method)

 	(caelus.run.hpc_queue.SerialJob static method)

 	(caelus.run.hpc_queue.SlurmQueue static method)

 	
 	description (caelus.scripts.core.CaelusScriptBase attribute)

 	discover_versions() (in module caelus.config.cmlenv)

E

 	
 	email_address (caelus.run.hpc_queue.HPCQueue attribute)

 	ensure_directory() (in module caelus.utils.osutils)

 	env (caelus.run.tasks.Tasks attribute)

 	environ (caelus.config.cmlenv.CMLEnv attribute)

 	
 environment variable

 	CAELUSRC, [1]

 	CAELUSRC_SYSTEM, [1]

 	CAELUS_PROJECT_DIR

 	
 	epilog (caelus.scripts.core.CaelusScriptBase attribute)

 	exec_time_processor() (caelus.post.logs.LogProcessor method)

 	extend_rule() (caelus.post.logs.LogProcessor method)

F

 	
 	find_caelus_recipe_dirs() (in module caelus.run.core)

 	find_case_dirs() (in module caelus.run.core)

 	
 	find_recipe_dirs() (in module caelus.run.core)

 	from_yaml() (caelus.utils.struct.Struct class method)

G

 	
 	gen_yaml_decoder() (in module caelus.utils.struct)

 	gen_yaml_encoder() (in module caelus.utils.struct)

 	get_appdata_dir() (in module caelus.config.config)

 	get_caelus_root() (in module caelus.config.config)

 	get_config() (in module caelus.config.config)

 	get_cpl_root() (in module caelus.config.config)

 	
 	get_default_config() (in module caelus.config.config)

 	get_job_scheduler() (in module caelus.run.hpc_queue)

 	get_mpi_size() (in module caelus.run.core)

 	get_queue_settings() (caelus.run.hpc_queue.HPCQueue method)

 	(caelus.run.hpc_queue.PBSQueue method)

 	(caelus.run.hpc_queue.SerialJob method)

 	(caelus.run.hpc_queue.SlurmQueue method)

H

 	
 	HPCQueue (class in caelus.run.hpc_queue)

I

 	
 	is_caelus_casedir() (in module caelus.run.core)

 	is_job_scheduler() (caelus.run.hpc_queue.HPCQueue static method)

 	(caelus.run.hpc_queue.SerialJob static method)

 	
 	is_parallel() (caelus.run.hpc_queue.HPCQueue static method)

 	(caelus.run.hpc_queue.ParallelJob static method)

 	(caelus.run.hpc_queue.SerialJob static method)

J

 	
 	join_outputs (caelus.run.hpc_queue.HPCQueue attribute)

L

 	
 	lib_dir (caelus.config.cmlenv.CMLEnv attribute)

 	load() (caelus.run.tasks.Tasks class method)

 	load_yaml() (caelus.utils.struct.Struct class method)

 	
 	logfile (caelus.post.logs.LogProcessor attribute)

 	LogProcessor (class in caelus.post.logs)

 	logs_dir (caelus.post.logs.LogProcessor attribute)

 	LogWatcher (class in caelus.post.plots)

M

 	
 	mail_opts (caelus.run.hpc_queue.HPCQueue attribute)

 	make_plot_method() (in module caelus.post.plots)

 	merge() (caelus.utils.struct.Struct method)

 	(in module caelus.utils.struct)

 	
 	mpi_bindir (caelus.config.cmlenv.CMLEnv attribute)

 	mpi_dir (caelus.config.cmlenv.CMLEnv attribute)

 	mpi_extra_args (caelus.run.hpc_queue.HPCQueue attribute)

 	mpi_libdir (caelus.config.cmlenv.CMLEnv attribute)

 	mpl_settings() (in module caelus.post.plots)

N

 	
 	name (caelus.run.hpc_queue.HPCQueue attribute)

 	(caelus.scripts.core.CaelusScriptBase attribute)

 	
 	num_nodes (caelus.run.hpc_queue.HPCQueue attribute)

 	num_ranks (caelus.run.hpc_queue.HPCQueue attribute)

O

 	
 	ostype() (in module caelus.utils.osutils)

P

 	
 	ParallelJob (class in caelus.run.hpc_queue)

 	parser (caelus.scripts.core.CaelusScriptBase attribute)

 	PBSQueue (class in caelus.run.hpc_queue)

 	plot_continuity_errors (caelus.post.plots.CaelusPlot attribute)

 	plot_fields (caelus.post.plots.LogWatcher attribute)

 	plot_force_coeffs_hist() (caelus.post.plots.CaelusPlot method)

 	plot_forces_hist() (caelus.post.plots.CaelusPlot method)

 	plot_residuals() (caelus.post.plots.LogWatcher method)

 	plot_residuals_hist() (caelus.post.plots.CaelusPlot method)

 	plotdir (caelus.post.plots.CaelusPlot attribute)

 	PlotsMeta (class in caelus.post.plots)

 	prepare_mpi_cmd() (caelus.run.hpc_queue.HPCQueue method)

 	(caelus.run.hpc_queue.ParallelJob method)

 	(caelus.run.hpc_queue.SerialJob method)

 	
 	prepare_srun_cmd() (caelus.run.hpc_queue.SlurmQueue method)

 	
 process_logs.log_file

 	CPL task option

 	
 process_logs.logs_directory

 	CPL task option

 	
 process_logs.plot_continuity_errors

 	CPL task option

 	
 process_logs.plot_residuals

 	CPL task option

 	
 process_logs.residual_fields

 	CPL task option

 	
 process_logs.residuals_plot_file

 	CPL task option

 	process_run_env() (caelus.run.hpc_queue.HPCQueue method)

 	project_dir (caelus.config.cmlenv.CMLEnv attribute)

Q

 	
 	qos (caelus.run.hpc_queue.HPCQueue attribute)

 	
 	queue (caelus.run.hpc_queue.HPCQueue attribute)

 	queue_name (caelus.run.hpc_queue.HPCQueue attribute)

R

 	
 	rcfiles_loaded() (in module caelus.config.config)

 	reload_config() (in module caelus.config.config)

 	remove_files_dirs() (in module caelus.utils.osutils)

 	res_files (caelus.post.logs.LogProcessor attribute)

 	reset_default_config() (in module caelus.config.config)

 	residual() (caelus.post.logs.SolverLog method)

 	residual_processor() (caelus.post.logs.LogProcessor method)

 	(caelus.post.plots.LogWatcher method)

 	root (caelus.config.cmlenv.CMLEnv attribute)

 	
 run_command.cmd_args

 	CPL task option

 	
 	
 run_command.cmd_name

 	CPL task option

 	
 run_command.log_file

 	CPL task option

 	
 run_command.mpi_extra_args

 	CPL task option

 	
 run_command.num_ranks

 	CPL task option

 	
 run_command.parallel

 	CPL task option

S

 	
 	script_body (caelus.run.hpc_queue.HPCQueue attribute)

 	search_cfg_files() (in module caelus.config.config)

 	SerialJob (class in caelus.run.hpc_queue)

 	set_work_dir() (in module caelus.utils.osutils)

 	setup_logging() (caelus.scripts.core.CaelusScriptBase method)

 	shell (caelus.run.hpc_queue.HPCQueue attribute)

 	skip_field() (caelus.post.plots.LogWatcher method)

 	skip_fields (caelus.post.plots.LogWatcher attribute)

 	SlurmQueue (class in caelus.run.hpc_queue)

 	solve_completed (caelus.post.logs.LogProcessor attribute)

 	
 	solver_log (caelus.post.plots.CaelusPlot attribute)

 	SolverLog (class in caelus.post.logs)

 	stderr (caelus.run.hpc_queue.HPCQueue attribute)

 	stdout (caelus.run.hpc_queue.HPCQueue attribute)

 	Struct (class in caelus.utils.struct)

 	StructMeta (class in caelus.utils.struct)

 	subiter_map (caelus.post.logs.LogProcessor attribute)

 	submit() (caelus.run.hpc_queue.HPCQueue class method)

 	(caelus.run.hpc_queue.PBSQueue class method)

 	(caelus.run.hpc_queue.SerialJob class method)

 	(caelus.run.hpc_queue.SlurmQueue class method)

T

 	
 	task_file (caelus.run.tasks.Tasks attribute)

 	
 task_set.case_dir

 	CPL task option

 	
 task_set.name

 	CPL task option

 	
 task_set.tasks

 	CPL task option

 	tasks (caelus.run.tasks.Tasks attribute)

 	Tasks (class in caelus.run.tasks)

 	
 	TasksMeta (class in caelus.run.tasks)

 	time (caelus.post.logs.LogProcessor attribute)

 	time_array (caelus.post.plots.LogWatcher attribute)

 	time_limit (caelus.run.hpc_queue.HPCQueue attribute)

 	time_processor() (caelus.post.logs.LogProcessor method)

 	(caelus.post.plots.LogWatcher method)

 	time_str (caelus.post.logs.LogProcessor attribute)

 	timestamp() (in module caelus.utils.osutils)

 	to_yaml() (caelus.utils.struct.Struct method)

U

 	
 	update() (caelus.run.hpc_queue.HPCQueue method)

 	
 	user_home_dir() (in module caelus.utils.osutils)

 	username() (in module caelus.utils.osutils)

V

 	
 	version (caelus.config.cmlenv.CMLEnv attribute)

W

 	
 	watch_file() (caelus.post.logs.LogProcessor method)

 	
 	write_config() (caelus.config.config.CaelusCfg method)

 	write_script() (caelus.run.hpc_queue.HPCQueue method)

Y

 	
 	yaml_decoder (caelus.config.config.CaelusCfg attribute)

 	(caelus.utils.struct.Struct attribute)

 	
 	yaml_encoder (caelus.config.config.CaelusCfg attribute)

 	(caelus.utils.struct.Struct attribute)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Caelus Python Library (CPL)

 		
 Introduction

 		
 Usage

 		
 Contributing

 		
 Installing Caelus Python Library (CPL)

 		
 Installing CPL with Anaconda Python Distribution

 		
 Install Anaconda

 		
 Install CPL

 		
 Alternate Installation – Virtualenv

 		
 Prepare system for virtual environment

 		
 Install CPL

 		
 Check installation

 		
 Building documentation

 		
 Running tests

 		
 Configuring Caelus Python Library

 		
 Checking current configuration

 		
 CPL configuration reference

 		
 Core library configuration

 		
 CML version configuration

 		
 Command-line Applications

 		
 Common CLI options

 		
 Available command-line applications

 		
 caelus – Common CPL actions

 		
 caelus_tutorials – Run tutorials

 		
 Caelus Tasks

 		
 Quick tutorial

 		
 Tasks reference

 		
 run_command – Run CML executables

 		
 copy_files – Copy files

 		
 copy_tree – Recursively copy directories

 		
 clean_case – Clean a case directory

 		
 process_logs – Process solver outputs

 		
 task_set – Group tasks

 		
 Caelus Python API

 		
 caelus.config – Caelus Configuration Infrastructure

 		
 Caelus Python Configuration

 		
 Caelus CML Environment Manager

 		
 caelus.utils – Basic utilities

 		
 Struct Module

 		
 Miscellaneous utilities

 		
 caelus.run – CML Execution Utilities

 		
 Caelus Tasks Manager

 		
 CML Execution Utilities

 		
 Job Scheduler Interface

 		
 caelus.post – Post-processing utilities

 		
 Caelus Log Analyzer

 		
 Caelus Plotting Utilities

 		
 caelus.scripts – CLI App Utilities

 		
 Basic CLI Interface

_static/ajax-loader.gif

